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Oxygen radical-mediated tissue damage has been im- 
plicated in a large number of pathological conditions 
including ischemia reperfusion injury (Chart 1994, Euler 
1995, Kinouchi et al. 1991, Samaja et al. 1994), 
neurodegenerative diseases (Fahn and Cohen 1992, 
Jenner 1994, Lafon-Kazal et al. 1993), neonatal hyperoxic 
lung injury (Davis et al. 1993), atherosclerosis (Halliwell 
1993), and the aging process (Ku et al. 1993, Orr and 
Sohal 1994). Therefore, many studies have been fo- 
cused on enzymes and molecules that can scavenge 
oxygen radicals for their potential in the prevention and/ 
or therapy of these disorders. 

Under normal circumstances, the majority of oxygen 
radicals are generated in the mitochondria as a byproduct 
of electron transport and oxidative phosphorylation re- 
quired for the production of ATP. Cells are protected 
against this metabolically-induced oxidative stress by 
several oxygen radical scavengers, including the super- 
oxide dismutases, catalase, glutathione peroxidase, 
and reduced glutathione. Among these, one form of 
superoxide dismutase, manganese superoxide 
dismutase (MnSOD), has been the subject of particular 
interest because it is located within mitochondria, can be 
induced by several cytokines and superoxide itself, and 
appears to be involved in other processes, including 
tumor suppression and cellular differentiation (Akashi et 
al. 1995, Church et al. 1993, Harris et al. 1991, Sato et 
al. 1995, St. Clair et al. 1994). 

To investigate the role of MnSOD and to distinguish its 
actions from those of cytoplasmic CuZnSOD, the mouse 
MnSOD gene (Sod2) was inactivated by homologous 
recombination (Li et al. 1995) to delete exon 3. Pheno- 
typic analysis of the mutant animals placed on the CD1 
tml ~f (an outbred strain) genetic background (CD1- 
Sod2<tm 1Cje>, formerly designated asSod2)indicated 
that whereas there is no detectable atypical phenotype 
in the heterozygous mutants (Sod2-~+) up to 9 months of 
age, homozygous mutant mice (Sod2-~-) die within the 
first 10 days or life. The major phenotype abnormalities 
observed with Sod2-~-mice include: 1 ) dilated cardiomy- 
opathy with a thin left ventricular wall and enlarged left 
ventricular cavity; 2) accumulation of lipid in liver and 
skeletal muscle; 3) metabolic acidosis with increased 
ketones and decreased bicarbonate in the plasma; 4) 
excretion of 3-hydroxy-3-methylglutaric and 3-hydroxy- 
3-methylglutaconic acids, 5) respiratory alkalosis, as an 
attempt to compensate for the metabolic acidosis; and 6) 
a severe reduction in succinate dehydrogenase (com- 

plex II) and aconitase (a TCA cycle enzyme) activities 
in the heart and, to a lesser extent, in other organs. 
These findings indicate that MnSOD is required for the 
normal biological function of tissues by maintaining the 
integrity of mitochondrial enzymes susceptible to direct 
inactivation by superoxide. 

MnSOD mutant mice [designated Sod2 (r~lBcM] have 
also been generated by Lebovitz et al. (1996) by gene 
targeting to produce a deletion of exons 1 and 2. Ho- 
mozygous S o d 2  ~IBcM mutant mice on a mixed genetic 
background survived for as long as 18 days. These mice 
are anemic and exhibit progressive motor abnormalities 
characterized by weakness, rapid fatigue and ataxia. In 
addition, lack of myelination was observed in the spinal 
cord, and dystrophic neurons were seen scattered 
throughout the CNS. Possible explanations for the dis- 
crepancy of the phenotypes observed in the two different 
strains of MnSOD deficient mice include differences 
between the targeting vectors used to generate the 
mutations, between the embryonic stem cells employed, 
and/or between the genetic backgrounds on which the 
mutant mice were bred. A major influence of genetic 
background on the mutant phenotype of several strains 
of knockout mice has been reported (Threadgill et al. 
1995; Rozmahel et al. 1996), and these phenotypic 
differences have become quite important for revealing 
the existence of interesting genetic modifiers of the 
ef fects of the primary mutations. Therefore,  
Sod2<tmlCje> -/- mice were generated on two back- 
grounds in addition to the CD1 background originally 
used: 8 to 10 generations of backcrosses to C57BL/6J 
(designated B6) which made them 99.6 to 99.9% 
congenic on B6, and B6D2 F2 [the C57BL/6J heterozy- 
gotes were crossed to DBA/2 (designated D2) to gener- 
ate B6D2 F1 animals, and then these Fls were inter- 
crossed to generate B6D2 F2 animals for phenotypic 
analysis. 

In contrast to the 10 and 18 day survival times of CD1 - 
Sod2<tmlCje> and SOD2 ~ScM, respectively, the live- 
born -/- mice on C57BL/6J background (B6<Sod2-/->) 
survived for only up to 4 days, with an average life span 
of 1.5 days. In addition, about half of the B6<Sod2-/-> 
mice died about day 15 of gestation, and the -/- fetuses 
appeared very pale. On the other hand, the liveborn 
B6D2 F2<Sod2-/-> mice survived for up to 18 days with 
an average life span of 11 days. The long-lived B6D2 
F2Sod2-/-> mice (> 15 days) displayed neurological 
abnormalities which included ataxia and seizures. How- 
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ever, their hearts were not as severely dilated as those 
of the CDI<Sod2-/-> mice, and neurological complica- 
tions, rather dilated cardiomyopathy, appear to be the 
cause of death in the long-lived B6D2 F2<Sod2-/-> 
mice. These findings imply the existence of genetic 
factors that modify the target organ damage in Sod2-1- 
mice, perhaps by modulating of oxygen free radicals. 
Identification of these genetic modifier(s) will advance 
our understanding of the mechanisms of oxidative tissue 
damage and may offer potential strategies for preven- 
tion and therapy. 
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